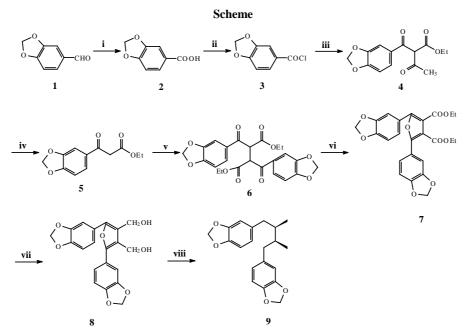
Total Synthesis of Machilin A


Wen Xin GU, An Xin WU, Qiang GAO, Xin Fu PAN

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Machilin **A**, isolated from the bark and root of *Machilus thunbergii* Sieb. *et* Zucc., was synthesized in eight steps from piperonal, with the coupling reaction as a key step.

Keywords: Machilin A, piperonal, reduction, synthesis.

Machilin **A** 9, a natural diarylbutane-lignan, was isolated from the bark and root of *Machilus thunbergii* Sieb. *et* Zucc., which was used in traditional Chinese madicine¹. This kind of lignan has shown various bioactivities and attracted organic chemists a great attention^{2, 3}.

9 i. KMnO₄, 70-80 0 C, 1h, 88%; ii. SOCl₂, 95 0 C; iii. CH₃COCH₂COOEt/NaOEt, THF, reflux; iv. NH₄Cl, EtOH, reflux, (ii, iii, iv overall yield 78%); v. I₂ / NaOEt, THF, 98%; vi. PTSA, Benzene, reflux, 84%; vii. LAH, THF, reflux, 95%; viii. PdO, H₂, THF / CHCl₃ (v : v = 10 :1), 80%.

Wen Xin GU et al.

Up to now, no synthetic route of machilin A has been achieved yet. Herein, we report the first total synthesis of machilin A using piperonal 1 as starting material and this approach could be applied to other lignans as a new and efficient synthetic route.

As shown in **Scheme**, compound **5**, which was prepared from piperonal **1** through four steps, was treated with NaOEt / I_2 to give dimer **6** quantitatively⁴. Acid catalyzed cyclization of compound **6** led to furan **7** and reduction of **7** with LiAlH₄ produced furan **8**, both of the reactions were easily achieved in good yield. From compound **8** to machilin **A**, it could be achieved in one step by a novel selective reductive removal of allylic hydroxy, we found that the reaction was accomplished in a mixed solvent of THF-CHCl₃ (v : v = 10 :1) under hydrogen (6 Mpa) using palladium oxide as a catalyst in higher yield. All of our spectral data of machilin **A 9** were in agreement with the literature report^{1, 6}.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (No. 29772012) for financial support.

References and notes

- 1. S. A. Afifi, M. M. Ahmed, J M. Pezzuto and A. D. Kingnorn, *Phytochem*, **1993**, *34*(3), 839.
- 2. D. A. Whiting, Nat. Prod. Rep., 1987, 499.
- 3. W. Donald Macrae, G. H. Neil Towers, Phytochem., 1984, 23 (6), 1207.
- 4. Wu Anxin, Zhao Yurui, Chen Ning, Pan Xinfu, Synthetic Communications, 1997, 27 (2), 331.
- 5 Compound 8: mp 158~159 0 C; IR (KBr): 3402, 2909, 1496, 1261cm⁻¹; ¹HNMR (80Mz, DMSO-d₆) δ : 3.42 (s, 2H, OH D₂O exchange), 4.61 (s, 4H, CH₂O), 6.05 (s, 4H, OCH₂O), 6.8-7.5 (m, 6H, ArH); MS (m/z): 368 (M⁺, 72), 366 (89), 350 (10), 149 (100).
- 6. Compound **9**: mp 49~50 0 C (lit 1: 48~50 0 C); IR (KBr): 2901, 1605, 1505, 1495, 1451cm⁻¹; ¹HNMR (80Mz, CDCl₃) δ : 0.85 (d, 6H, 6.6Hz, -CH₃), 1.72 (m, 2H, CH), 2.22-2.28 (m, 2H, ArCH₂), 2.68-2.72 (m, 2H, ArCH₂), 5.90 (s, 4H, OCH₂O), 6.55-6.73 (m, 6H, ArH); MS (*m*/*z*): 326 (M⁺, 14), 267 (8), 238 (11), 135 (100), 77 (26).

Received 9 August 1999